physics (Newton law of gravity)

120 weeks ago

Newton's law of universal gravitation states that a particle attracts every other particle in the universe using a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.[note 1] This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning.[1] It is a part of classical mechanics and was formulated in Newton's work Philosophiæ Naturalis Principia Mathematica ("the Principia"), first published on 5 July 1687. (When Newton's book was presented in 1686 to the Royal Society, Robert Hooke made a claim that Newton had obtained the inverse square law from him; see the History section below.)
In modern language, the law states: Every point mass attracts every single other point mass by a force pointing along the line intersecting both points. The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them.[2] The first test of Newton's theory of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry Cavendish in 1798.[3] It took place 111 years after the publication of Newton's Principia and approximately 71 years after his death.
Newton's law of gravitation resembles Coulomb's law of electrical forces, which is used to calculate the magnitude of the electrical force arising between two charged bodies. Both are inverse-square laws, where force is inversely proportional to the square of the distance between the bodies. Coulomb's law has the product of two charges in place of the product of the masses, and the electrostatic constant in place of the gravitational constant.
Newton's law has since been superseded by Albert Einstein's theory of general relativity, but it continues to be used as an excellent approximation of the effects of gravity in most applications. Relativity is required only when there is a need for extreme precision, or when dealing with very strong gravitational fields, such as those found near extremely massive and dense objects, or at very close distances (such as Mercury's orbit around the Sun).

0 Upvotes

SHARE

0 Answers

5 Comments

Similar Questions

**Nobody has answered this question yet!**

be the first one to answer this!

**Nobody has answered this question yet!**

be the first one to answer this!

**Nobody has answered this question yet!**

be the first one to answer this!

**shekinah_011**Newton's law of universal gravita ..

**shivanichau88**Newton's law of gravitation, statement that ..

**Nobody has answered this question yet!**

be the first one to answer this!

Questions

1 day ago

1 Answer

0 Notes

0 Comments

akash awaghadenewtons law of gravity????Vinod Gulatinice explanation friend.